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Abstract
Approximate Lie symmetries of the (2 + 1)-dimensional nonlinear diffusion
equation with a small convection are completely classified. It is known that
the invariance principle furnishes a systematic method of solving initial-value
problems. The solutions of instantaneous source type of the 2D diffusion–
convection equation are obtained for the case of power-law diffusivity, using a
symmetry reduction.

PACS numbers: 02.20.As, 02.30.Jr, 05.45.−a

1. Introduction

The nonlinear diffusion–convection equation

ut = ∇(D(u)∇u) + K(u)∇u (1)

has numerous applications in physics, chemistry and biology [1] (see a review of related
references in [2, 3]). Much work has been devoted to constructing exact solutions of such
equations [3–5]. One of the effective methods of solving nonlinear partial differential equations
is the classical Lie group analysis [6–8]. The technique of Lie symmetry reduction provides
relatively simple similarity solutions of equation (1) which are at the same time of significant
physical interest. The group classification of one-dimensional equation (1) by point [9, 10]
and potential [11] symmetries was performed. The symmetry properties of two- and three-
dimensional equation (1) were classified in [3] and used there to find new exact solutions, in
addition to the solutions obtained by Philip and Knight [5].

We consider (with first order of precision) two-dimensional nonlinear diffusion equation
with a small convection

ut = (ϕ(u)ux)x + (ψ(u)uy)y + εf (u)ux + εg(u)uy + o(ε) (2)

where ε is a small parameter. In the filtration theory, for instance, ε characterizes the direction
of unsaturated flow in porous media. We investigate the group properties of equation (2)
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by means of the theory of approximate Lie symmetries [12]. This gives advantages when
some terms of an equation can be taken as being small. Often the group of approximate
Lie symmetries of such an equation is larger than the group of classical Lie symmetries of
the equation that provides more possibilities of finding exact solutions. Such is the case, for
example, for equation

ut = (uσ ux)x + (uσuy)y + εuσ (uα + β)ux + εuσ (uα + γ )uy.

The only Lie symmetries are the time and space translations. While there is an additional
approximate Lie symmetry for arbitrary β and γ (case 5 of section 2), an additional Lie
symmetry, dilation, exists only if β = 0, γ = 0.

In section 2, the class of nonlinear equations (2) is completely classified with respect to
admitted approximate Lie symmetries. The group properties of equation (2) turn out to be
closely related to the properties of the pure diffusion equation

ut = (ϕ(u)ux)x + (ψ(u)uy)y (3)

analysed in [11]. It is a special case of the group classification result presented in [13] for the
two- and three-dimensional heat equation with a source

ut = ∇(D(u)∇u) + Q(u). (4)

Some exact solutions of equation (3) are found there for the isotropic case (ϕ(u) = u−1,

ψ(u) = u−1) and a solution of 2D equation (4) with power-law forms of D(u),Q(u).
Here the use of approximate symmetries in solving initial-value problems allows us to

reduce the number of independent variables of the problem. In section 3, in this way the
solutions of instantaneous source type are found for equation (2) with the power-law form of
the diffusion coefficient. The symmetry properties and group invariant solutions of the 1D
diffusion equation with small convective terms were studied in [14].

2. Group classification of 2D nonlinear diffusion–convection equation

We perform an approximate Lie group analysis of equation (2) with an accuracy o(ε). It
means that hereinafter in all equalities we neglect the terms of order o(ε).

We consider the infinitesimal operator

X = τ (t, x, y, u, ε)∂t + ξ(t, x, y, u, ε)∂x + η(t, x, y, u, ε)∂y + υ(t, x, y, u, ε)∂u (5)

corresponding to the infinitesimal transformation of equation (2)

t̄ = t + aτ(t, x, y, u, ε) + o(a) x̄ = x + aξ(t, x, y, u, ε) + o(a)

ȳ = y + aη(t, x, y, u, ε) + o(a) ū = u + aυ(t, x, y, u, ε) + o(a)
(6)

where
τ = τ 0(t, x, y, u) + ετ 1(t, x, y, u) + o(ε) ξ = ξ0(t, x, y, u) + εξ1(t, x, y, u) + o(ε)

η = η0(t, x, y, u) + εη1(t, x, y, u) + o(ε) υ = υ0(t, x, y, u) + ευ1(t, x, y, u) + o(ε).

(7)

Operator (5) has the form X = X0 + εX1 + o(ε) with Xi = τ i∂t + ξ i∂x + ηi∂y + υi∂u, i = 0, 1,
in this notation. The coordinates of operator (5) extended to first and second orders as

XE = X + υt∂ut
+ υx∂ux

+ υy∂uy
+ υxx∂uxx

+ υyy∂uyy

are calculated by the prolongation formulae

υxj
= Dxj

υ − ux1Dxj
τ − ux2Dxj

ξ − ux3Dxj
η j = 1, 2, 3

υxixi
= Dxi

υxi
− ux1xi

Dxi
τ − ux2xi

Dxi
ξ − ux3xi

Dxi
η i = 2, 3
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where (x1, x2, x3) = (t, x, y) and Dxi
is the total differentiation operator with respect to xi .

The condition

XE(ut − (ϕ(u)ux)x − (ψ(u)uy)y − εf (u)ux − εg(u)uy)|(2) = o(ε) (8)

of invariance of equation (2) under the infinitesimal transformation (6) provides a set of
determining equations, which are linear partial differential equations (PDEs) in functions (7).
In order to analyse these equations we apply the equivalence transformations of equation (2)

t̄ = α1t + α2 x̄ = α3x + εα4t + α5 ȳ = α6y + εα7t + α8 ū = α9u + α10

ϕ̄ = α2
3

α1
ϕ ψ̄ = α2

6

α1
ψ f̄ = α3

α1
f − α4 ḡ = α6

α1
g − α7

(α1, α9 > 0, α3, α6 �= 0), which allow us to simplify the form of functions ϕ,ψ, f, g and do
not alter the class of equations (2).

Splitting by powers of ε reduces (8) in zeroth order to the condition

X0
E(ut − (ϕ(u)ux)x − (ψ(u)uy)y)|(3) = 0

of invariance of equation (3) under the infinitesimal transformation generated by X0. In first
order in ε we have the equality

X1
E(ut − (ϕ(u)ux)x − (ψ(u)uy)y)|(3) + H = 0 (9)

where, given X0, the addend H is calculated as

H = 1

ε
X0

E(ut − (ϕ(u)ux)x − (ψ(u)uy)y − εf (u)ux − εg(u)uy)|(2).

The symmetry properties of unperturbed equation (3) were studied in [13]. Therefore, for all
functional forms of ϕ(u) and ψ(u) classified in [13], the terms τ 0, ξ0, η0, υ0 of coordinates (7)
of the infinitesimal operator (5) are known. For arbitrary ϕ(u) and ψ(u) the only symmetries
of equation (3) are the translation and the dilation operators

Y1 = ∂t Y2 = ∂x Y3 = ∂y Y4 = 2t∂t + x∂x + y∂y

and, if ψ = κϕ, κ = ±1, the rotation operator

Y0 = y∂x − κx∂y.

This implies τ 0 = C1 + 2C4t, ξ
0 = C2 + C4x + C0y, η0 = C3 + C4y − κC0x, υ0 = 0 and

condition (9) yields the determining equations in τ 1, ξ1, η1, υ1:

τ 1 = τ 1(t) ξ1 = ξ1(t, x, y) η1 = η1(t, x, y) υ1
uu = 0

υ1ϕ′ +
(
τ 1
t − 2ξ1

x

)
ϕ = 0 υ1ψ ′ +

(
τ 1
t − 2η1

y

)
ψ = 0 η1

xϕ + ξ1
y ψ = 0

ξ1
t +

(
2υ1

xu − ξ1
xx

)
ϕ − ξ1

yyψ + 2υ1
xϕ

′ + C4f − C0g = 0 υ1
xxϕ + υ1

yyψ − υ1
t = 0

η1
t − η1

xxϕ +
(
2υ1

yu − η1
yy

)
ψ + 2υ1

yψ
′ + C4g + κC0f = 0 C0(κϕ − ψ) = 0.

Hence for arbitrary ϕ,ψ, f, g we obtain C4 = 0, C0 = 0 and the principal Lie algebra LP of
equation (2) is spanned by operators

X1 = ∂t X2 = ∂x X3 = ∂y X3+i = εYi i = 1, 2, 3 X7 = εY4. (10)

For ψ = κϕ, κ = ±1, there is an additional operator

X0 = εY0. (11)

If, furthermore, κ = −1 and g = f , the basis of LP is extended by the operator Y4 + Y0.
These are the only symmetries admitted by equation (2) when ϕ(u),ψ(u) do not enter
(up to an equivalence transformation) into the list of functional forms which provide additional
symmetries of equation (3).
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Table 1. Symmetries for equation (2), ϕ(u) = eαu, ψ(u) = ±eβu .

f (u) g(u) Symmetries

eγ u e(γ +(β−α)/2)u or 0 (α − 2γ )Y4 + Y5

u e
1
2 (β−α)u or 0 αY4 + Y5 − 2εt∂x

Table 2. Symmetries for equation (2), ϕ(u) = eu, ψ(u) = κeu, κ = ±1.

f (u) g(u) κ Symmetries

eu eu ± Y4 − Y5

Y4 − εYx − εYy

Y0 − εκYy + εYx

ueu (u + α) eu ± 1
2 Y4 − 1

2 Y5 + εYx + εYy

− Y4 + Y0 + εα(Yx − Yy)

ueu eu or 0 ± 1
2 Y4 − 1

2 Y5 + εYx

(eαu + β) eu (eαu + γ ) eu ± 1
2 Y5 − (

α + 1
2

)
Y4 + εα(βYx + γ Yy)

− Y4 + Y0 + ε(γ − β)(Yx − Yy)

(eαu + β) eu γ eu ± 1
2 Y5 − (

α + 1
2

)
Y4 + εα(βYx + γ Yy)

u + αeu u + βeu ± 1
2 Y4 + 1

2 Y5 − εαYx − εβYy − εt∂x − εt∂y

− Y4 + Y0 + ε(β − α)(Yx − Yy)

u + αeu eu ± 1
2 Y4 + 1

2 Y5 − εαYx − εt∂x − εYy

eu(eαu(λ cos u + eu(eαu(µ cos u − + 1
2 Y5 − (

α + 1
2

)
Y4 + Y0 + εaYx + εbYy ,

µ sin u) + β) λ sin u) + γ ) where a = αβ + γ, b = αγ − β

eαu + (γ u + β) eu eαu + (γ u − β) eu − Y4 + Y0 − 2εβ(Yx − Yy)

(eαu + βu) eu (eαu − βu) eu − Y5 − (α + 1)Y4 + αY0 − 2εβ(Yx − Yy)

(eαu + γ eβu + λ) eu (eαu − γ eβu + µ) eu − Y5 + (α − β)Y0 − (α + β + 1)Y4 + εaYx + εbYy ,
where a = λ(α + β) + µ(α − β),
b = λ(α − β) + µ(α + β)

eαu 0 ± (1 − 2α)Y4 + Y5

eu 0 ± Y4 − Y5

Y4 − εYx

Y0 − εκYy

u + αeu 0 ± 1
2 Y4 + 1

2 Y5 − εαYx − εt∂x

Similarly, proceeding with other kinds of ϕ(u) and ψ(u) from [13], we find the Lie
algebra of admitted symmetries of corresponding equation (2) for arbitrary f (u), g(u) and
then identify the functional forms of f and g which possess extra symmetries.

Case 1. ϕ(u) = eαu, ψ(u) = ±eβu. For arbitrary functions f and g the Lie algebra is spanned
by operators (10) and the operator

X8 = εY5 where Y5 = αx∂x + βy∂y + 2∂u.

Additional symmetries are presented in table 1.

Case 2. ϕ(u) = eu, ψ(u) = κ eu, κ = ±1. If f and g are arbitrary, the Lie algebra is spanned
by operators (10), (11) and the operator

X8 = εY5 where Y5 = x∂x + y∂y + 2∂u.

In the classification result given in table 2 we use auxiliary operators

Yx = 1
8 (x2 − κy2)∂x + 1

4xy∂y + 1
2x∂u Yy = 1

4κxy∂x + 1
8 (κy2 − x2)∂y + 1

2κy∂u.
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Table 3. Symmetries for equation (2), ϕ(u) = eu, ψ(u) = ±1.

f (u) g(u) Symmetries

ueu eu/2 or 0 Y4 − Y5 + 2εYx

u + αeu e−u/2 or 0 Y4 + Y5 − 2εαYx − 2εt∂x

(eβu + α) eu e(β+1/2)u or 0 (1 + 2β)Y4 − Y5 − 2εαβYx

eu/2 + αeu u Y5 − εαYx − 2εt∂y

eu eαu 2αY4 − Y5 + ε(1 − 2α)Yx

eu 0 Y5 − εYx

Y4 − Y5

Table 4. Symmetries for equation (2), ϕ(u) = uσ ,ψ(u) = ±uρ .

f (u) g(u) Symmetries

uα+σ/2 uα+ρ/2 or 0 Y5 − 2αY4

ln u u(ρ−σ)/2 or 0 σY4 + Y5 − 2εt∂x

Case 3. ϕ(u) = eu, ψ(u) = ±1. If f and g are arbitrary, the basis of Lie algebra is given by
operators (10) and

X8 = εY5 where Y5 = x∂x + 2∂u.

In table 3 the cases of its extension are given. An auxiliary operator Yx = 1
6x2∂x + 2

3x∂u is
used there.

Case 4. ϕ(u) = uσ ,ψ(u) = ±uρ. For arbitrary functions f and g the Lie algebra is spanned
by operators (10) and the operator

X8 = εY5 where Y5 = σx∂x + ρy∂y + 2u∂u.

Additional symmetries are presented in table 4.

Case 5. ϕ(u) = uσ ,ψ(u) = κuσ , κ = ±1. For arbitrary functions f and g the Lie algebra is
spanned by operators (10), (11) and

X8 = εY5 where Y5 = σx∂x + σy∂y + 2u∂u.

In table 5 additional symmetries are summarized. Here we use the notation

Yx = σ

8(σ + 1)
((x2 − κy2)∂x + 2xy∂y) +

xu

2(σ + 1)
∂u

Yy = σ

8(σ + 1)
(2κxy∂x + (κy2 − x2)∂y) +

κyu

2(σ + 1)
∂u.

Case 6. ϕ(u) = u−1, ψ(u) = κu−1, κ = ±1. For arbitrary functions f and g the Lie algebra
is infinite dimensional. It is generated by operators (10) and

X∞ = ε(A(x, y)∂x + B(x, y)∂y − 2Axu∂u)

where A(x, y) and B(x, y) are any solutions of the system Ax = By,Ay = −κBx . In
table 6 the cases of extension of the basis of Lie algebra are given. An auxiliary operator is
Yt = t∂t + u∂u.
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Table 5. Symmetries for equation (2), ϕ(u) = uσ ,ψ(u) = κuσ , κ = ±1.

f (u) g(u) κ Symmetries

uσ uσ ± σY4 − Y5

Y4 − εYx − εYy

Y0 − εκYy + εYx

uσ (uα + β) uσ (uα + γ ) ± 1
2 Y5 − (

α + σ
2

)
Y4 + εα(βYx + γ Yy)

− Y4 + Y0 + ε(γ − β)(Yx − Yy)

ln u + αuσ γ ln u + βuσ ± σ
2 Y4 + 1

2 Y5 − εt∂x − εσ(αYx + βYy) − εγ t∂y

γ = 1 − Y4 + Y0 + ε(β − α)(Yx − Yy)

uσ ln u uσ (ln u + α) ± σ
2 Y4 − 1

2 Y5 + εYx + εYy

− Y4 + Y0 + εα(Yx − Yy)

uσ (uα(λ cos ln u + uσ (uα(µ cos ln u − + 1
2 Y5 − (

α + σ
2

)
Y4 + Y0 + εaYx + εbYy ,

µ sin ln u) + β) λ sin ln u) + γ ) where a = αβ + γ, b = αγ − β

uσ (uα + β ln u) uσ (uα − β ln u + γ ) − Y5 − (α + σ)Y4 + αY0 + εaYx + εbYy ,
where a = αγ − 2β, b = αγ + 2β

uα + µu + βuσ uα + µu + γ uσ − Y4 + Y0 + ε(γ − β)(Yx − Yy)

uα + µu + βuσ uα − µu + γ uσ − (σ − α − 1)Y4 + Y5 + (α − 1)Y0 + εaYx + εbYy ,
where a = γ (α − 1) + β(α − 2σ + 1),

b = γ (α − 2σ + 1) + β(α − 1)

uσ 0 ± σY4 − Y5

Y4 − εYx

Y0 − εκYy

uσ (uα + β) 0 ± 1
2 Y5 − (

α + σ
2

)
Y4 + εαβYx

− Y4 + Y0 + ε(γ − β)(Yx − Yy)

ln u + αuσ 0 ± σ
2 Y4 + 1

2 Y5 − εt∂x − εσαYx

uσ ln u 0 ± σ
2 Y4 − 1

2 Y5 + εYx

Table 6. Symmetries for equation (2), ϕ(u) = u−1, ψ(u) = κu−1, κ = ±1.

f (u) g(u) κ Symmetries

uα uα or 0 ± (α + 1)Y4 − Yt

ln u ln u ± Y4 − Yt + εt∂x + εt∂y

uα(β cos ln u + γ sin ln u) uα(γ cos ln u − β sin ln u) + (α + 1)Y4 − Y0 − Yt

uα + γ uβ uα − γ uβ − (α + β + 2)Y4 + (β − α)Y0 − 2Yt

uα + β ln u uα − β ln u − (α + 2)Y4 − αY0 − 2Yt + 2εβt(∂x − ∂y )

ln u 0 ± Y4 − Yt + εt∂x

Case 7. ϕ(u) = uσ ,ψ(u) = ±1. If f and g are arbitrary, a basis of Lie algebra is given by
operators (10) and

X8 = εY5 where Y5 = σx∂x + 2u∂u.

In table 7 the cases of its extension are given, using an auxiliary operator Yx = (3σ + 4)−1(
σ
2 x2∂x + 2xu∂u

)
.

Case 8. ϕ(u) = u−4/3, ψ(u) = ±1. For arbitrary functions f and g the Lie algebra is spanned
by operators (10) and

X8 = ε(x2∂x − 3xu∂u) X9 = εY5 where Y5 = − 2
3x∂x + u∂u.

Additional symmetries are presented in table 8.
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Table 7. Symmetries for equation (2), ϕ(u) = uσ ,ψ(u) = ±1.

f (u) g(u) Symmetries

uσ 0 Y4 − εYx

σY4 − Y5

uσ uα 2αY4 − Y5 + ε(σ − 2α)Yx

uα + βuσ uα−σ/2 or 0
(

σ
2 − α

)
Y4 + 1

2 Y5 + ε(α − σ)βYx

uσ ln u Y5 − εσYx − 2εt∂y

uσ/2 + αuσ ln u Y5 − εσαYx − 2εt∂y

ln u + αuσ u−σ/2 or 0 σY4 + Y5 − 2εσαYx − 2εt∂x

uσ ln u uσ/2 or 0 σY4 − Y5 + 2εYx

0 uα 2αY4 − Y5

0 ln u Y5 − 2εt∂y

Table 8. Symmetries for equation (2), ϕ(u) = u−4/3, ψ(u) = ±1.

f (u) g(u) Symmetries

uα or 0 uα+2/3 or 0 Y5 − (
α + 2

3

)
Y4

u−2/3 or 0 ln u Y5 − εt∂y

ln u u2/3 or 0 Y5 − 2
3 Y4 − εt∂x

Case 9. ϕ(u) = 1, ψ(u) = κ, κ = ±1. For arbitrary functions f and g the Lie algebra is
spanned by operators (10), (11) and the operators

X8 = ε(4t2∂t + 4tx∂x + 4ty∂y − u(4t + x2 + κy2)∂u)

X9 = εY5 X10 = εY6 X11 = εY7 X∞ = εα(t, x, y)∂u

where Y5 = u∂u Y6 = 2t∂x − xu∂u Y7 = 2t∂y − κyu∂u

αt = αxx + καyy.

Table 9 lists the cases of extension of this Lie algebra.
The group properties of the 1D diffusion–convection equation

ut = (ϕ(u)ux)x + εf (u)ux + o(ε) (12)

can be obtained from the above classification of 2D equation (2). The symmetries of
equation (12) are presented in the rows of tables 3, 7, 8, 9 corresponding to the cases g(u) = 0
or such values of constant parameters that make g(u) equal to zero. Besides it should be put
formally y ≡ 0, ∂y ≡ 0 in these operators.

3. Solutions of equation (2) with power-law diffusivity

Here the solutions of instantaneous source type of equation

ut = (uσ ux)x + (uσuy)y + εf (u)ux + εg(u)uy + o(ε) (13)

for some forms of the convective terms f (u) and g(u) are sought. These are the solutions of
the initial-value problem with initial function

u(t, x, y)|t=0 = (E0 + εE1)δ(x, y) (14)

where E0, E1 = const and δ(x, y) is a Dirac measure. When ε = 0 this problem for the
corresponding diffusion equation has been solved in [15] (see also [16]). According to the
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Table 9. Symmetries for equation (2), ϕ(u) = 1, ψ(u) = κ, κ = ±1.

f (u) g(u) κ Symmetries

uσ uσ or 0 ± σY4 − Y5

ln u β ln u ± 2Y7 − 2κβY6 + ε(κ + β2)tY0 + 1
2 εu(y − βx)(βy + κx)∂u

u(2 − ε(x + κβy))∂u

u u ± Y4 − Y5

− 4εtY0 − (4(x + y) + εu(4t − x2 + y2))∂u

(2ω′ − εωu)∂u, where ω = ω(x − y)

+ 4εtY0 + (4(x − y) + εu(y2 − x2))∂u

−2εt (Y6 + Y7) + (4t + (x + y)2 − 1
6 ε(x + y)3u)∂u

(2 − ε(x + y)u)∂u

(4(x + y) + εu(4t − (x + y)2))∂u

u 0 ± Y4 − Y5

2εtY0 + (εxyu − 4y)∂u

−εtY6 +
(
2t + x2 − 1

6 εx3u
)
∂u

(2 − εxu)∂u

(4x + εu(2t − x2))∂u

u + βeu u − βeu − Y4 + Y0 + (ε(x − y)u − 2)∂u

eu(λ cos u + eu(µ cos u − + Y4 − Y0 − ∂u

µ sin u) λ sin u)

eβu γ eβu ± βY4 − ∂u

eβu + γ eu eβu − γ eu, γ �= 0 − (β + 1)Y4 + (1 − β)Y0 − 2∂u

invariance principle [17], if the problem (13), (14) is invariant under a group of transformations,
then the solution should be sought among functions invariant under this group. Invariance of
the initial-value problem (13), (14) means that equation (13), the manifold t = 0 where the
initial data are given and the data themselves are invariant under the group.

All symmetries of equation (13), except for the translations, leave the initial manifold
invariant. Transformations (6) change the Dirac measure to δ̄ = δ − a(ξx + ηy)δ

∣∣
x=0
y=0

+ o(a).

Therefore, the criterion for invariance of initial condition (14) under transformations (6) takes
the form

(υ(t, x, y, u, ε) + (E0 + εE1)(ξx + ηy)δ)

∣∣∣∣ t=0,x=0,y=0
u=(E0+εE1)δ

= o(ε). (15)

Case 1. For f (u) = uσ , g(u) = uσ , condition (15) is satisfied by the symmetries

(σ + 1)Y4 − Y5 − εYx − εYy and Y0 + εYx − εYy

from table 5. The solution of characteristic equations of the form dt
τ

= dx
ξ

= dy

η
= du

υ
for

these symmetries yields the invariants

I1 = t
1

σ+1 u

(
1 +

ε(x + y)

2(σ + 1)

)
I2 = t−

1
2(σ+1) r

(
1 + ε

σ(x + y)

8(σ + 1)

)

r =
√

x2 + y2. Then, following the methods of the theory of approximate Lie symmetries
[12], the solution is sought in the form

u = t−
1

σ+1

(
1 − ε(x + y)

2(σ + 1)

)
(U(I2) + εV (I2)).
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Figure 1. Solution of equation (17) when σ = 3, E0 = 1, E1 = 1, ε = 0.01.

The expansion of this function in a series in ε leads to the expression

u = t−
1

σ+1

((
1 − ε(x + y)

2(σ + 1)

)
U(z) + εz

σ(x + y)

8(σ + 1)
U ′(z) + εV (z)

)
+ o(ε) (16)

where z = t
− 1

2(σ+1) r is a similarity variable. The substitution of (16) into the equation

ut = (uσ ux)x + (uσuy)y + εuσ (ux + uy) + o(ε) (17)

and splitting by powers of ε reduce (17) to the system of ordinary differential equations (ODEs)

(z2U)′ + 2(σ + 1)(zUσU ′)′ = 0 (18)

(z2V )′ + 2(σ + 1)(z(UσV )′)′ = 0

with the particular solution U = (
σ
4

(
C2

1 − z2
)/

(σ + 1)
) 1

σ , V = (
σ
4

/
(σ + 1)

) 1
σ C2

(
C2

1 − z2
) 1

σ
−1

.
Hence a solution of equation (17) is given by

u =




t−
1

σ+1
(

σ
4

/
(σ + 1)

) 1
σ

((
C2

1 − r2t−
1

σ+1
) 1

σ + ε
(
C2

1 − r2t−
1

σ+1
) 1

σ
−1

× (
C2 − x+y

4(σ+1)

(
2C2

1 − r2t−
1

σ+1
)))

r � C1t
1

2(σ+1)

0 r > C1t
1

2(σ+1) .

The values C2
1 = 4

σ
(σ + 1)

(
E0
4π

) σ
σ+1 , C2 = E1

σπ

(
E0
4π

)− 1
σ+1 are defined from the condition of

constant energy∫
R2

u(t, x, y) dx dy = E0 + εE1.

The solution obtained is valid for finite t within the limits from 0 to the values of order ε−1.
Otherwise the convective terms become comparable with other terms of equation (2) and the
equation takes on different group properties. Note that the values of σ running from 3 to 4
are of interest in the filtration theory. In figure 1 the solution of equation (17) is presented for
ε = 0.01, σ = 3.

Case 2. For f (u) = uσ (uα + β), g(u) = uσ (uα + γ ), β, γ = const, condition (15) is satisfied
by the symmetries

X1 = ε((σ + 1)Y4 − Y5) X2 = εY0.

The case α = 1/2 stands out because of the additional symmetry

X3 = (σ + 1)Y4 − Y5 − ε(βYx + γ Yy)

satisfying (15). Therefore, we consider the equation

ut = (uσ ux)x + (uσuy)y + εuσ
((

u
1
2 + β

)
ux +

(
u

1
2 + γ

)
uy

)
+ o(ε). (19)
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The operator X1 is unessential, since X1 = εX3. The invariant test, XiI = o(ε), i = 2, 3,
provides the invariants

I1 = t
1

σ+1 u

(
1 + ε

βx + γy

2(σ + 1)

)
I2 = t−

1
2(σ+1) r

(
1 + εσ

βx + γy

8(σ + 1)

)
I3 = ε arctan

y

x
.

According to [11], the solution should be sought in the form

u = t−
1

σ+1

((
1 − ε

βx + γy

2(σ + 1)

)
U(z) + εσz

βx + γy

8(σ + 1)
U ′(z) + εV (z, θ)

)
(20)

where z = t−
1

2(σ+1) r, θ = arctany

x
. Substitution of (20) into (19) gives the same ODE (18) in

U(z) and a linear PDE

1

2(σ + 1)
(z2V )z + (z(Uσ V )z)z +

1

z
UσVθθ + zUσ+ 1

2 U ′(sin θ + cos θ) = 0 (21)

in V (z, θ). The function U = (
σ
4

(
C2

1 − z2
)/

(σ + 1)
) 1

σ can be taken again as a solution of

(18). If we let V = (
σ
4

/
(σ + 1)

) 1
σ
(
C2

1 − z2
) 1

σ
−1

(C2 − zv(ξ)(sin θ + cos θ)), ξ = C−2
1 z2, then

(21) takes the form of a hypergeometric equation

ξ(ξ − 1)v′′ + (ξ(2 + 1/σ) − 2)v′ +
1

2σ
v − C2

1

2σ

(
σC2

1

4(σ + 1)

) 1
2σ

(1 − ξ)
1

2σ
+1 = 0 (22)

in v(ξ).
When σ = 3

2 the function v = C2
1

/
13

(
3
20C2

1

)1/3( 7
3 − ξ

)
(1 − ξ)1/3 is a particular solution

of equation (22) and then a solution of equation (19) is given by

u =




(
3

20

)2/3
t−2/5

((
C2

1 − r2t−2/5
)2/3 − ε

(
3

20

)1/3
t−1/5 x+y

13

(
7
3C2

1 − r2t−2/5
)

+ ε
(
C2

1 − r2t−2/5
)−1/3

(
C2 − βx+γy

10

(
2C2

1 − r2t−2/5
)))

r � C1t
1/5

0 r > C1t
1/5

where C2
1 = 20

3

(
E0
4π

)3/5
, C2 = 2E1

3π

(
E0
4π

)−2/5
.

When σ = 3
4 the function v = C2

1

/
44

(
3
28C2

1

)2/3
(2 ln ξ + 4ξ2 − 13ξ − 3ξ−1)(1 − ξ)−1/3

is a particular solution of equation (22). When σ = 1
2n

, n = 1, 2, . . . , a particular solution of
(22) is defined by a polynomial of degree n + 1 in ξ .

Case 3. For f (u) = uσ (uα(λ cos ln u + µ sin ln u) + β), g(u) = uσ (uα(µ cos ln u −
λ sin ln u) + γ ), β, γ = const, the symmetries

X1 = ε((σ + 1)Y4 − Y5) X2 = εY0

satisfy condition (15). There is an additional symmetry

X3 = Y5 − (σ + 1)Y4 + 2Y0 + ε(β + 2γ )Yx + ε(γ − 2β)Yy

subject to α = 1/2. The invariant test, XiI = o(ε), i = 2, 3, provides the invariants

I1 = t
1

σ+1 u

(
1 + ε

βx + γy

2(σ + 1)

)
I2 = t

− 1
2(σ+1) r

(
1 + εσ

βx + γy

8(σ + 1)

)

I3 = ε

(
arctan

y

x
− 1

σ + 1
ln t

)
.
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The group invariant solution has the same form (20), but with other similarity variables
z = t

− 1
2(σ+1) r, θ = arctan y

x
− 1

σ+1 ln t . Substitution of (20) into equation (13) for given f (u)

and g(u) (α = 1/2) yields ODE (18) in U(z) and a linear PDE

1

2(σ + 1)
(z2V )z + (z(Uσ V )z)z +

z

σ + 1
Vθ +

1

z
Uσ Vθθ + zUσ+ 1

2 U ′((µ cos ln U

− λ sin ln U) sin θ + (µ sin ln U + λ cos ln U) cos θ) = 0

in V (z, θ).

4. Conclusion

Here the approximate Lie group analysis is applied to the 2D nonlinear diffusion–convection
equation (2) with the convection taken as a small perturbation. Equation (2) inherits all
symmetriesX0 of unperturbed equation (3) as ‘trivial’ symmetries εX0, which are the solutions
of homogeneous equation (9). We classified all functional forms of f (u), g(u) which admit
additional ‘zeroth-order’ symmetries X0 + εX1 with X0 �= 0. Such symmetries are more
useful in constructing group invariant solutions. This feature is demonstrated in section 3,
where the solutions of instantaneous source type of equation (13) are obtained. Two zeroth-
order symmetries (case 1) allow us to reduce the initial-value problem (13), (14) to solving
two ODEs. The invariance under zeroth-order symmetry and a symmetry of the form εX0

(cases 2 and 3) reduces the problem (13), (14) to solving an ODE and a linear PDE.
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